PROGRAMME NAME	: COMMON TO ALL ENGINEERING BRANCH
SEMESTER	: FIRST
COURSE TITLE	: ENGINEERING CHEMISTRY-I
COURSE CODE	:

I. RATIONALE:

The role of chemistry and chemical products is expanding greatly in every branch of engineering. Chemistry is considered as one of the core subjects for Diploma Engineering students. The subject Engineering Chemistry creates foundation for understanding basic concepts and principles to solves broad based engineering problems. The comprehension of concepts and principles like Nonmaterial's, water treatment, various aspects with regard to electrochemistry and environment. This course will develop basic understanding and skill in diploma of engineering students.

II. INDUSTRY/ EMPLOYER EXPECTED OUTCOME:

The aim of this course is to attain following industry/ employer expected outcomes through various teaching learning experiences. Apply the principles of chemistry to solves broad- based engineering problems.

III. COURSE LEVEL LEARNING OUTCOMES (COS):

Students will be able to achieve and demonstrate the following COs (course outcomes) on completion of course based learning.

CO1 - Solving various engineering problems applying the basic knowledge of atomic structure and explain the properties of given material based on chemical bonding. Explain the crystal structure of given solids.

CO2 - Learning about solution and able to understand the concept of nano-particles for engineering purpose.

CO3 - Use relevant water treatment method to solve domestic and industrial problems.

CO4 - Solving the engineering problems using concept of Electrochemistry.

CO5 - Able to understand the problem related to pollution and concept of solid waste management.

Sr. No.	Theory Learning Outcomes (TLOs) aligned to COs	Learning content mapped with Theory Learning Outcomes (TLOs) and COs	Suggested Learning Pedagogies	No Of Lecture	со
1	TLO1.1: Explain the chemistry of atom and Indian Philosophy of Atom TLO1.2: Explain the properties of given material based on the bond formation. TLO1.3: Describe the molecular structure of given solid, liquid and gases.	UNIT 1: Atomic Structure and Chemical Bonding Indian Chemistry: Philosophy of atom by Acharya Kanad. Rutherford model of atom, Bohr's theory (expression of energy and radius to be omitted), and hydrogen spectrum explanation based on Bohr's model of atom, Heisenberg uncertainty principle, Quantum	Chalk-board demonstration, Case study and Video demonstration	10	CO1

IV. Theory Learning Outcome and Aligned Course Content:

					<u>г </u>
	TLO1.4: Describe the crystal	numbers - orbital concept.			
	structure of given solids.	Shapes of s, p and d- orbital.			
	TLO1.5: Explain property of	Concept of chemical bonding-			
	metallic solid.	Electronic theory of chemical			
		bonding, types of bonds: Ionic			
		bonding (NaCl example),			
		Covalent bond (H ₂ , F ₂ , HF			
		hybridization in BeCl ₂ , BF ₃ , CH ₄ ,			
		NH_3 , H_2O), Coordination bond in			
		NH4 ⁺ , and Anomalous properties			
		of NH ₃ , H ₂ O due to hydrogen			
		bonding, and metallic bonding.			
		Molecular arrangement in solid,			
		liquid and gases.			
		Structure of solids: Crystalline			
		and amorphous solids, Properties			
		of metallic solids, unit cell: simple			
		cubic, body center cubic (BCC),			
		face center cubic (FCC),			
		hexagonal close pack crystal.			
2	TLO2.1: Describe the	UNIT 2: Solutions	Chalk-board	10	CO2
-	method to express the	Solution – Idea of solute, solvent	demonstration,		002
	concentration.	and solution, methods to express	Case study and		
	TLO2.2: Solve the numerical	the concentration of solution-	Video		
	problem based on molarity,	molarity <i>(M),</i> Molality (m),	demonstration		
	molality, normality.	Normality (N), ppm, mass			
	TLO2.3: Explain the	percentage, volume percentage			
	mechanism of buffer	and mole fraction with numerical			
	solution.	problem related to these terms.			
	TLO2.4: Describe the	Buffer solution and its			
	importance of nano-	Mechanism, Indicator and its			
	particles in engineering.				
	particles in engineering.	theory. Nano-Particles			
		Definition, Importance of Nano-			
		particles - Area of application in			
		engineering - Mechanical,			
		Electrical, Electronics etc.	Chalk-board	12	602
3	TLO3.1: Explain types of	UNIT 3: Water Technology		12	CO3
	hardness of water.	Graphical presentation of water	demonstration,		
	TLO3.2: List salts causing	distribution on Earth (pie or bar	Case study and Video		
	temporary and permanent	diagram). Classification of soft	demonstration		
	hardness of water.	and hard water based on soap			
	TLO3.3: Describe boiler	test, salts causing water			
	corrosion and caustic	hardness, unit of hardness and			
	embrittlement.	simple numerical on water			
	TLO3.3: Explain the given	hardness.			
	type of water softening	Cause of poor lathering of soap in			
	process.	hard water, problems caused by			
	TLO3.4: Describe the waste	the use of hard water in boiler			

	water treatment and	(scale and sludge, foaming and			
	portable water treatment.	priming, corrosion etc.), and			
		quantitative measurement of			
		water hardness by ETDA method,			
		total dissolved solids (TDS)			
		alkalinity estimation.			
		i) Water softening techniques –			
		Soda lime process, Zeolite			
		process and ion exchange			
		process.			
		ii) Municipal water treatment (in			
		brief only) – sedimentation,			
		coagulation, filtration,			
		sterilization.			
		Water for human consumption			
		for drinking and cooking			
		purposes from any water sources			
		and enlist Indian standard			
		specification of drinking water			
		(collect data and understand			
		standards).			
4	TLO4.1: Describe	UNIT 4: Electro Chemistry	Chalk-board	8	CO4
-	mechanism of electrolysis	Definition of pH and pOH, pH	demonstration,	0	004
	of CuSO ₄ solution by using	scale, numerical and its	Case study and		
	cu and pt electrode.	importance.	Video		
	TLO4.2: Solve numerical	Electronic concept of oxidation,	demonstration		
	based on Faraday's laws of	reduction and redox reactions.			
	electrolysis.	Definition of terms: Electrolytes,			
	TLO4.3: Explain the	non-electrolytes, ionization			
	industrial application of	dissociation, cathode, anode with			
	electrolysis.				
	-	suitable examples, Electrochemical series for cation			
	TLO4.4: Distinguish				
	between primary and	and anion, Mechanism of			
	secondary cell.	electrolysis of CuSO ₄ solution.			
		Faraday's laws of electrolysis:			
		Faraday's first and second law,			
		relation between electrochemical			
		equivalent and chemical			
		equivalent, and simple numerical			
		problems based on Faraday's			
		Law.			
		Industrial application of			
		Electrolysis –			
		 Electrometallurgy 			
		 Electroplating 			
		 Electrolytic refining. 			
		Application of redox reactions in			
		electrochemical cells –			
1		 Primary cells – dry cell, 	1	1	1

		Secondary cell -			
		commercially used lead			
		storage battery, fuel and			
		Solar cells.			
5	TLO5.1: Describe the air	UNIT 5: Environmental	Chalk-board	8	CO5
5	TLO5.1: Describe the air pollution and its harmful effect. TLO5.2: Identify the different factor responsible for air pollution. TLO5.3: Describe the water pollution and its effect. TLO5.4: Identify the harmful effects of heavy metal ion. TLO5.5: Explain the solid waste management. TLO5.6: Describe the concept of green chemistry.	UNIT 5: Environmental Chemistry General concept of pollution and pollutants: Air pollution- Definition, Air pollutants, sources and harmful effects, Formation of acid rain and its effects, Greenhouse effect causes, global warming harmful effects, Importance of ozone layers, causes for depletion of Ozone layer, harmful effects of ozone layer depletion, Smog, Control of Air pollution. Water pollution- causes of water pollution, sewage, effluents, harmful effects of sewerage, definition, sewage disposal, Industrial effluents, harmful effects of effluents, harmful effects of heavy metal ions-lead, cadmium, zinc and copper. Treatment of effluents, Eutrophication, definition and harmful effects. Solid waste management- Solid waste Definition, Problem Type of solid waste, methods of disposal, Land fill and incineration. Green Chemistry- Definition, Goal of green chemistry (Basic ideas), Recycling, Advantage of recycling (Basic ideas)	Chalk-board demonstration, Case study and Video demonstration	8	CO5

V. Laboratory Learning Outcome and Aligned Practical/ Tutorial Experience:

Sr. No.	Practical / Tutorials/ Laboratory Learning Outcome (LLO)	Laboratory Experience/ Practical Titles/ Tutorials Title	Number of hrs.	Relevant COs
1	LLO1.1 Identify cation in given mixture by	Identification of cation in	2	All
	performing selective test	given inorganic mixture		
2	LLO2.1 Identify anion in given mixture by	Identification of anion in	2	All
	performing selective test	given inorganic mixture		
3	LLO3.1 Identify states of matter of material by	Identification of states of	2	All

	using simulation Applying heating and cooling	matter.		
	Techniques			
	LLO3.2 Relate temperature –pressure diagram.			
4	LLO4.1 Determine the electrode potential of	Determine the electrode	2	CO4
	copper metal by setting Electrochemical cell.	potential of copper		
	LLO4.2 Measure electrode potential of Cu using			
	Voltmeter.			
	LLO4.3 Measure the cell potential for various			
	conditions.			
5	LLO5.1 Determine the electrode potential of Iron	Determine the electrode	2	CO4
	metal by setting Electrochemical cell.	potential of Iron metal.		
	LLO5.2 Measure electrode potential of Iron metal			
	using Voltmeter.			
	LLO5.3 Measure the cell potential for various			
	conditions.			
6	LLO6.1 Determine the voltage generated from	Determination of the	2	CO4
	chemical reaction using Daniel Cell.	voltage generated from		
	LLO6.2 Set up Daniel cell. Prepare electrolyte	chemical reaction using		
	solution	Daniel Cell.		
	LLO6.3 Measure voltage accurately.			
7	LLO7.1 Prepare Electrolyte solution of CuSO ₄ of	Determination of	2	CO4
-	known concentration.	electrochemical		
	LLO7.2 Set up electrolysis apparatus.	equivalent of Cu metal		
	LLO7.3 Control various parameters of electrolytes.	using Faraday's First Law.		
	LLO7.4 Determine electrochemical equivalent of			
	Cu metal using Faraday's First Law.			
8	LLO8.1 Prepare Electrolyte solution of the given	Determine the equivalent	3	CO4
	metal of known concentration.	weight of metal using	0	
	LLO8.2 Set up electrolyte solution.	Faraday's second law.		
	LLO8.3 Control various parameters of electrolytes.			
	LLO8.4 Analyze the data obtained from the			
	experiment.			
	LLO8.5 Verify Faraday's second law of electrolysis.			
9	LLO9.1 Prepare acid solution of known	*Determination of the	2	CO3
	concentration.	alkalinity of a given water	۷	
	LLO9.2 Determine alkalinity of water sample.	sample.		
10	LLO10.1 Prepare EDTA solution of Known	*Calculation of total	3	CO3
10	concentration.	hardness, temporary	J	
	LLO10.2 Determine the total hardness of water by	hardness and permanent		
	titration.	hardness of water		
	LLO10.3 Prepare standard solution of standard	samples by EDTA method.		
	hard water sample.	samples by EDTA method.		
11		Determination of	2	COF
11	LLO11.1 Determine turbidity by using a		Z	CO5
	Nephelometer or simulation.	turbidity of a given water		
		sample by Nephelometric		
		method by using		
		Nephelometer or		
		simulation.		

12	LLO12.1 Set up titration Apparatus.	Determination of	2	CO2		
	LLO12.2 Record the observations.	dissolved oxygen in the				
	LLO12.3 Calculate dissolved oxygen.	given water sample.				
13	LLO13.1 Prepare AgNO3 solution of known	Determination of chloride	2	CO5		
	concentration.	content in the given				
	LLO13.2 Calculate chloride content in water	water sample by Mohr's				
	sample.	Method.				
14	LLO14.1 Use universal indicator for pH values.	*Determination of pH	2	CO2		
	LLO14.2 Calculate pH value by using pH meter.	value of given solution				
		using pH meter and				
		universal indicator.				
15	LLO15.1 Set up conductometric titration assembly.	Determination of	2	CO4		
	LLO15.2 Record conductance.	equivalence point of				
	LLO15.3 Determine equivalence point.	acetic acid and				
		ammonium hydroxide				
		using conductivity meter.				
Note: Out of above suggestive LLOs						
'*' Marked Practicals (LLOs) are mandatory.						
Mini	mum 80% of the above listed lab experiments are to	be performed.				

Judicious mix of LLOs is to be performed to achieve desired outcomes.

VI. Suggest Micro project /Assignment / Activities for Specific Learning/ Skills Developments (Self Learning):

MICRO PROJECT:

- Type of bonds: Prepare chart and models displaying different types of bonds with examples.
- Prepare a chart for showing different types of bonds or molecules.
- Crystal structure: Prepare Models of SC, FCC, HCP, BCC.
- Ionization: Prepare chart displaying ionization phenomenon.
- Collect water samples from different water sources and measure of hardness of water.

ASSIGNMENT:

- Explain covalent bond, ionic bond, coordinate bond, hydrogen bond.
- Draw Crystal structures of SC, BCC, FCC, HCP
- Simple problems on hardness calculation.
- Solve numerical based on Faraday's First and second law of electrolysis.
- Prepare chart showing mechanism of electrolysis of CuSO₄ solution using Cu and Pt electrode.

VII. Laboratory Equipment / Instruments / Tool / Software Required:

Sr. No.	Equipment Name with Broad Specification	Relevance LLO Number
1.	Electric oven inner size 18 *18*18; temperature range	LLO3.1
	100 to 250°C with capacity of 40 Lt	LLO3.2
2	Electronic balance, with scale range of 0.001gm to	LL07.1
	500.0gm, pan size 100mm; response time 3-5 sec; power	LLO8.1
	requirement 90-250 V, 10watt	LLO9.1

		LLO12.2
3	Voltmeter, Voltmeter range 0-20V or 0-100 V, accuracy	LLO4.2
	+/- 0.1% full scale	LLO5.2, LLO13.1
4	Digital Thermometer range 50°C to 300°C	LLO3.1, LLO4.2

VIII. Suggest weightage to Learning efforts and Assessment purpose (specification Table):

Sr. No.	Unit	Unit Title	Aligned COs	Learning Hours (L+T)	Weightage%
1	I	Atomic structure, Chemical	CO1	10	20
		bonding			
2	П	Solution	CO2	10	14
3	Ш	Water Treatment	CO3	12	30
4	IV	Electrochemistry	CO4	8	20
5	V	Environmental Chemistry	CO5	8	16
		Grand ⁻	Fotal	48	100

IX. Assessment Methodologies/ Tools:

Formative assessment (Assessment for learning)

Two-unit tests of 30 marks and average of two-unit tests and mid-term examination of 50 marks. For laboratory learning 50 marks

Summative Assessment (Assessment for learning)

End semester assessment of 50 marks for theory

End semester of 50 marks for laboratory learning.

X. SUGGESTED COs- POS MATRIX FORM:

	Programme Outcomes (POs)						
Course	PO-1	PO-2	PO-3	PO-4	PO-5	PO-6	PO-7
Outcomes	Basic and	Problem	Design/	Engineering	Engineering Practices	Project	Life
Cos	Discipline	Analysis	Development	Tools	For society,	Management	long
	Specific		of solution		Sustainability and		Learning
	Knowledge				environment		
CO1	3	1	1	1	1	-	1
CO2	3	1	1	1	1	-	1
CO3	3	2	2	2	2	2	1
CO4	3	2	1	2	2	2	1
CO5	3	2	2	1	2	2	1

XI. Suggested-learning Materials / Books:

Sr. No.	Author	Title	Publisher with ISBN Number
1		Text Book of Chemistry for Class XI &	N.C.E.R.T., Delhi, 2017-18
		XII (Part-I, Part-II);	ISBN 81-7450-494-X
			ISBN 81-7450-535-O
2	Shikha Agarwal	Engineering Chemistry	Cambridge University Press; New Delhi,
			2015 ISBN978-1-107-47641-7
3	C.N. R. Rao	Understanding Chemistry	Universities Press (India) Pvt. Ltd., 2011.

				ISBN8173712506
	4	Dara, S. S. & Dr. S.	Engineering Chemistry	S. Chand. Publication, New Delhi, New
		S. Umare		Delhi, 2015
				ISBN 8174505660
	5	Dr. Vairam S.	Engineering Chemistry	Wiley India Pvt. Ltd., New Delhi, 2013.
				ISBN 978-8126543342
	6	Dr. G. H. Hugar &	Applied Chemistry Laboratory	NITTTR, Chandigarh, Publications, 2013-
		Prof A. N. Pathak	Practices, Vol. I and Vol. II	14
	7	Agnihotri, Rajesh	Chemistry for Engineers	Wiley India Pvt. Ltd., 2014
				ISBN9788126550784
	8	Anuj Rawlly,	Applied Chemistry with Lab Manual	Khana Book Publication Co. (P) Ltd. New
		Devdatta V. Saraf		Delhi, 2021, ISBN 978-93-91505-44-8
	9	S.C. Sharma &	Environmental Studies	Khanna Publishing House, New Delhi
		M.P. Poonia,		
	10	Rao, M. N. Rao,	Air Pollution	Tata Mc-Graw Hill Publication, New
		H.V.N,		Delhi, 1988, ISBN: 0-07- 451871-8.
	11	A I Vogel	Text book of Quantitative Inorganic	Longman Group Ltd Longman House,
			Analysis	Burnt Mill,
				Harlow Esses CM202JE, England ISBN
	- 10			0582407303
	12	Metcalf & Eddy,	Waste Water Engineering,	Mc-Graw Hill, New York, 2013, ISBN:
	4.2			077441206
	13	Nazaroff, William,	Environmental Engineering Science	Willy, New York, 2000, ISBN 10:
		Cohen, Lisa		0471144940
	4.4	De e e televil / C	Fundamental of Electric de militario	Labor Millow Q. Canadara, Hababara, Nava
	14	Bagotsky V.S.	Fundamental of Electrochemistry	John Wiley & Sons, Inc., Hoboken, New
				Jersey – ISBN 13978-0-471-70058-6
ł	1 Г	C E Lintrot	Mardan Inargania Chamistry	
	15	G.F. Liptrot	Morden Inorganic Chemistry	Unwin Hyman, London ISBN 9780713521832
$\left \right $	16	Peter Atkin	Physical Chemistry	
	10			Oxford University Press ISBN 9780198814740
	17	J D Lee	Concise Inerganic Chemistry	Wiley India Edition ISBN8126515546
1	1/	J D LEE	Concise Inorganic Chemistry	vviiev inula cultion ispivo120515540

XII. Learning Websites and Portals:

Sr. No.	Link/Portal	Description
1	www.visionlearning.com	Atomic structure and chemical bonding
2	www.chem1.com	Atomic structure and chemical bonding
3	https://www.wastewaterelearning.com/elearning/	Water Treatment
4	www.wqa.org	Water Treatment
5	www.chemcollective.org	Virtual Labs, simulation
6	https://www.ancient-origins.net/history-famous- pepole/india	IKS Philosophy of atom by Acharya Kanad